
    1

Click to add Title



  

“Even though I am in the thralls of Perl 6, I still do 
all my web development in Perl 5 because the 

ecology of modules is so mature.”

http://blogs.perl.org/users/ken_youens-clark/2016/10/web-development-with-perl-5.html



  

Web development 
and Perl 6



  

Bailador

BreakDancer

Crust

Web

Web::App::Ballet

Web::App::MVC

Web::RF



  

Bailador Nov 2016

BreakDancer Mar 2014

Crust Jan 2016

Web May 2016

Web::App::Ballet Jun 2015

Web::App::MVC Mar 2013

Web::RF Nov 2015



  

“Even though I am in the thralls of Perl 6, I still do 
all my web development in Perl 5 because the 

ecology of modules is so mature.”

http://blogs.perl.org/users/ken_youens-clark/2016/10/web-development-with-perl-5.html



  

Crust



  

Web



  

Bailador
to the rescue



  

Bailador config

my %settings;

multi sub setting(Str $name) {

    %settings{$name}

}

multi sub setting(Pair $pair) {

    %settings{$pair.key} = $pair.value

}

setting 'database'     => $*TMPDIR.child('dancr.db');

# webscale authentication method

setting 'username'     => 'admin';

setting 'password'     => 'password';

setting 'layout'       => 'main';



  

Bailador DB

sub connect_db() {

    my $dbh = DBIish.connect(
        'SQLite',
        :database(setting('database').Str)
    );

    return $dbh;

}

sub init_db() {

    my $db = connect_db;

    my $schema = slurp 'schema.sql';

    $db.do($schema);

}



  

Bailador handler

get '/' => {

    my $db = connect_db();

    my $sth = $db.prepare(
        'select id, title, text from entries order by id desc'
    );

    $sth.execute;

    layout template 'show_entries.tt', {

        msg           => get_flash(),

        add_entry_url => uri_for('/add'),

        entries       => $sth.allrows(:array-of-hash)
                             .map({$_<id> => $_}).hash,

        session       => session,

    };

}



  

Bailador - Logging in
post '/login' => sub (*@a) {

    my $err;

    # process form input

    if request.params<username> ne setting('username') {

        $err = "Invalid username";

    }

    elsif request.params<password> ne setting('password') {

        $err = "Invalid password";

    }

    else {

        session<logged_in> = True;

        set_flash('You are logged in.');

        return redirect '/';

    }

    # display login form

    layout template 'login.tt', {err => $err};

}



  

Bailador helpers

sub uri_for($path) {

    return $path;

}

sub layout($content) {

    template 'layouts/' ~ setting('layout') ~ '.tt', {

        css_url    => '/css/style.css',

        login_url  => uri_for('/login'),

        logout_url => uri_for('/logout'),

        session    => session,

        content    => $content,

    };

}



  

“Even though I am in the thralls of Perl 6, I still do 
all my web development in Perl 5 because the 

ecology of modules is so mature.”

http://blogs.perl.org/users/ken_youens-clark/2016/10/web-development-with-perl-5.html



  

Bailador on Crust

use Dancr;

my $app = Dancr.to-app();



  

Bailador on Crust

http server is ready: http://127.0.0.1:5000/ 
(pid:21285, keepalive: 1)



  

Bailador on Crust

http server is ready: http://127.0.0.1:5000/ 
(pid:21285, keepalive: 1)

No such method 'decode' for invocant of type 
'IO::Blob'  in block  at 
/home/nine/rakudo/install/share/perl6/site/sourc
es/597E1F971BE2BD4CFA4FD551B0AC356F
2F8D64DC (Bailador::Request) line 45



  



  

First dancing steps

use Dancer2:from<Perl5>;

get '/' => sub {
    'Hello World!';
};

start;



  

First dancing steps

use Dancer2:from<Perl5>;

get '/' => sub ($app) {
    'Hello World!';
};

start;



  

First dancing steps

use Dancer2:from<Perl5>;

get '/' => {
    'Hello World!';
};

start;



  

Dancr

use v6.c;

unit class Dancr;

use Dancer2:from<Perl5>;
use DBI:from<Perl5>;
use Template:from<Perl5>;

set 'database'     => $*TMPDIR.child('dancr.db');
set 'session'      => 'Simple';
set 'template'     => 'template_toolkit';
set 'logger'       => 'console';
set 'log'          => 'debug';
set 'show_errors'  => 1;
set 'startup_info' => 1;
set 'warnings'     => 1;
set 'username'     => 'admin';
set 'password'     => 'password';
set 'layout'       => 'main';



  

DBI

sub connect_db() {

    return DBI.connect(

        'dbi:SQLite:dbname='

            ~ setting('database'),

        Any,

        Any,

        ${sqlite_unicode => 1}

    ) or die $DBI::errstr;

}



  

Hooks

hook before_template_render =>
sub (%tokens) {
    %tokens<css_url>
        = request.base ~ 'css/style.css';
    %tokens<login_url>
        = uri_for('/login');
    %tokens<logout_url>
        = uri_for('/logout');
}



  

Performance

get '/' => {
   my $db  = connect_db();
   my $sql = 'select * from entries order by id desc';
   my $sth = $db.prepare($sql) or die $db.errstr;
   $sth.execute or die $sth.errstr;

   template 'show_entries.tt', Map.new((
      msg           => get_flash(),
      add_entry_url => uri_for('/add'),
      entries       => $sth.fetchall_hashref('id'),
   )).item;
}



  

Context

post '/add' => {
    send_error("Not logged in", 401)
        unless session('logged_in');

    my $db = connect_db();
    my $sql = 'insert into entries (title, text)'
         ~ 'values (?, ?)';
    my $sth = $db.prepare($sql) or die $db.errstr;
    $sth.execute(
        body_parameters.get('title'),
        body_parameters.get('text')
    ) or die $sth.errstr;

    set_flash('New entry posted!');
    redirect '/';
}



  

Performance comparison

Dancer2:

Requests per second:    174.18 [#/sec] (mean)

Bailador:

Requests per second:    4.16 [#/sec] (mean)



  



  

Mojolicious spaces

use Mojolicious::Lite:from<Perl5>;

get '/' => sub ($c) {
    $c.render(text => 'Hello World!');
}

app.start;



  

Mojolicious templates

use Mojolicious::Lite:from<Perl5>;

get '/' => sub ($c) {

    $c.stash(:one<23>);

    $c.render(:template<magic>, :two<24>);

}

app.start;

=finish

@@ magic.html.ep

The magic numbers are <%= $one %> and <%= $two %>.



  

Mojolicious fat comma

# Render the template "index.html.ep"

get '/' => sub ($c) {

    $c.render;

}, 'index';

# Render the template "hello.html.ep"

get '/hello';



  

Mojolicious Regexes

# /1

# /123

any '/:bar' => [bar => rx/\d+/], sub ($c) {

    my $bar = $c.param('bar');

    $c.render(
        text => "Our :bar placeholder matched $bar",
    );

};



  

Mojolicious Websockets

websocket '/echo' => sub ($c) {

    $c.on(json => sub ($c, $hash) {

        $hash<msg> = "echo: $hash<msg>";

        $c.send(${json => $hash});

    });

}



  

  18



  

Catalyst Controller

package XStats::Controller::Root;
use Moose;
use namespace::autoclean;

BEGIN { extends 'Catalyst::Controller'; }

#
# Sets the actions in this controller to be registered with no prefix
# so they function identically to actions created in MyApp.pm
#
__PACKAGE__->config(namespace => '');

__PACKAGE__→meta→make_immutable;

...



  

Catalyst Controller cont.

...

use v6-inline;

use CatalystX::Perl6::Component::Perl5Attributes;

method index($c) is Path is Args(0) {

    $c.stash({

        template  => 'index.zpt',

        uri_graph => $c.uri_for('graph'),

    });

}



  

CatalystX::Perl6::Component::Perl5Attributes

use Inline::Perl5;

multi trait_mod:<is>(Routine $declarand, :$Path!) is export {

    unless $declarand.does(Inline::Perl5::Perl5Attributes) {

        $declarand does Inline::Perl5::Perl5Attributes;

    }

    $declarand.attributes.push(
        'Path' ~ ($Path.isa(Bool) ?? '' !! "('$Path')")
    );

}



  

“Even though As I am in the thralls of Perl 6, I still 
do all my web development in with Perl 5 because 

the ecology of modules is so mature.”



  

Y



  

Thank You!

http://niner.name/talks/
http://github.com/niner/



  

 

A couple of months ago, Perl weekly linked to a blog 
post about web development with Perl 5.

It started like this:



  

 

  

“Even though I am in the thralls of Perl 6, I still do 
all my web development in Perl 5 because the 

ecology of modules is so mature.”

http://blogs.perl.org/users/ken_youens-clark/2016/10/web-development-with-perl-5.html

When I read this sentence, it kind of rubbed me the 
wrong way. Here’s someone who likes Perl 6, yet 
cannot use it for what he needs to be doing.

This is unacceptable.
I cannot believe that after so many people poured so 

much time into Perl 6, it should not be ready for 
something as mundane as web development.

So I set out on my quest to show that this sentence is 
misguided or just obsolete.



  

 

  

Web development 
and Perl 6

So, where do we begin?
How do we show that everything is not as bad as this 

blogger believes?
Well I did a little survey of modules.perl6.org and had a 

look at everything that sounded like a web framework 
to me.

These are the results:



  

 

  

Bailador

BreakDancer

Crust

Web

Web::App::Ballet

Web::App::MVC

Web::RF

As you can see, it's a reasonably short list. In itself 
that's not a bad thing as the list of actively developed 
web frameworks for Perl 5 probably is not much 
longer.

Of course, there are lots and lots and lots of failed 
attempts or abandoned frameworks on CPAN.

This raises the second question: to which category do 
these belong?



  

 

  

Bailador Nov 2016

BreakDancer Mar 2014

Crust Jan 2016

Web May 2016

Web::App::Ballet Jun 2015

Web::App::MVC Mar 2013

Web::RF Nov 2015

To answer this question, I had a look at the date of the 
last commit.

Keep in mind that the first stable release of Perl 6 as a 
language was cut on December 25th 2015 and in the 
months immediately before this release, we did a 
whole lot of semantic changes that we knew we had 
to do before we would want to commit to stability in 
the language.

So everything that has not been changed in or after 
those months can be considered either very lucky or 
probably bitrotted and unmaintained.

Web::App::Ballet for example claims that it will be 
merged with Bailador in the near future. Curious 
about when that could be I had a look at the git repo 
for when exactly this was written. Turns out the claim 
was made in March 2013.

So with this filter applied, we are left with 3 contenders:



  

 

  

“Even though I am in the thralls of Perl 6, I still do 
all my web development in Perl 5 because the 

ecology of modules is so mature.”

http://blogs.perl.org/users/ken_youens-clark/2016/10/web-development-with-perl-5.html

No, no, no. Let's not jump to conclusions.
3 can still be a very decent pool to chose from.
Just have a look.



  

 

  

Crust

Crust is in short a PSGI implementation in Perl 6.
It is a glue between the web framework and the web 

server.
PSGI let us centralize the code for supporting different 

ways to connect to a frontend web server like 
FastCGI or plain HTTP if the frontend is a proxy.

Though certainly very useful, this is probably not the 
first thing, you'll be looking for. But let's keep it in 
mind for now. We'll come back to it later.

5 minutes



  

 

  

Web

Web can be considered one level above Crust in the 
stack. It gives you request and response objects and 
a dispatcher.

Not luxurious, but sounds like a start. Except for that it 
apparently does not even support fancy features like 
file uploads yet.

There's another thing missing that I'd consider a 
somewhat essential part. I will come back to this 
later.

For now, let's move on to the first thing we should have 
considered.



  

 

  

Bailador
to the rescue

Bailador is pretty much a straight forward port of the 
popular Dancer framework to Perl 6. It's light weight, 
is being actively developed (though slowly) and 
brings much of what you'd expect from a web 
framework.

It is a little thin on the documentation and examples. 
But since it's a Dancer port, I resolved to just porting 
a canonical Dancer example to Bailador to see how 
well it does.

The program is sort of a minimalistic blog. You can log 
in and post something insightful which is then 
displayed on the front page.



  

 

  

Bailador config

my %settings;

multi sub setting(Str $name) {

    %settings{$name}

}

multi sub setting(Pair $pair) {

    %settings{$pair.key} = $pair.value

}

setting 'database'     => $*TMPDIR.child('dancr.db');

# webscale authentication method

setting 'username'     => 'admin';

setting 'password'     => 'password';

setting 'layout'       => 'main';

Bailador does not have any configuration system 
integrated, so first off, I wrote an extremely 
sophisticated one which you can see here.

Well, at least it lets me stick as close as possible to the 
original Dancer example.



  

 

  

Bailador DB

sub connect_db() {

    my $dbh = DBIish.connect(
        'SQLite',
        :database(setting('database').Str)
    );

    return $dbh;

}

sub init_db() {

    my $db = connect_db;

    my $schema = slurp 'schema.sql';

    $db.do($schema);

}

Here we have just a bit of database set up, nothing 
special. Though I have to mention that I very much 
like that DBIish uses named arguments instead of 
parsing some connection string.

Though its odd, that the SQLite driver doesn’t cope too 
well with getting a proper IO::Path object for the 
database so I have to explicitly turn the path into a 
string here.



  

 

  

Bailador handler

get '/' => {

    my $db = connect_db();

    my $sth = $db.prepare(
        'select id, title, text from entries order by id desc'
    );

    $sth.execute;

    layout template 'show_entries.tt', {

        msg           => get_flash(),

        add_entry_url => uri_for('/add'),

        entries       => $sth.allrows(:array-of-hash)
                             .map({$_<id> => $_}).hash,

        session       => session,

    };

}

Now if you know a bit of Dancer, you’ll feel right at 
home here, as this is pretty much the same as you’d 
write in Perl 5.

We define a route for GET requests to the root and 
give Bailador a code block to execute when the route 
matches.

Again DBIish’s interface is a bit cleaner than good old 
DBI. The advantage of being able to start over really.

5 minutes



  

 

  

Bailador - Logging in
post '/login' => sub (*@a) {

    my $err;

    # process form input

    if request.params<username> ne setting('username') {

        $err = "Invalid username";

    }

    elsif request.params<password> ne setting('password') {

        $err = "Invalid password";

    }

    else {

        session<logged_in> = True;

        set_flash('You are logged in.');

        return redirect '/';

    }

    # display login form

    layout template 'login.tt', {err => $err};

}

The login handler seems a good example for how to 
access parameters, sessions and redirects.

Very straight forward, easy to use, very familiar from 
Dancer.

So have I convinced you, that Perl 6 is absolutely 
ready?

Who of you noticed the interesting bit in the last line? 
Instead of just calling the template function as you’d 
do in Dancer, I pass the result to a function called 
layout. Why is that?



  

 

  

Bailador helpers

sub uri_for($path) {

    return $path;

}

sub layout($content) {

    template 'layouts/' ~ setting('layout') ~ '.tt', {

        css_url    => '/css/style.css',

        login_url  => uri_for('/login'),

        logout_url => uri_for('/logout'),

        session    => session,

        content    => $content,

    };

}

Well Bailador simply hasn’t seen as much development 
as Dancer or Mojolicious.

It has yet to gain builtin support for layout templates or 
hooks, so I had to write a little helper. Nothing bad 
really.

There’s also no facility to construct URIs. So for now 
our little example application cannot be run with a 
path prefix. This is what is also missing from Web.

Again probably not a deal breaker.
It just shows that Bailador is not as mature a 

framework as Dancer or Mojolicious.
Wait a minute...



  

 

  

“Even though I am in the thralls of Perl 6, I still do 
all my web development in Perl 5 because the 

ecology of modules is so mature.”

http://blogs.perl.org/users/ken_youens-clark/2016/10/web-development-with-perl-5.html

Doh!

Do you remember Crust, the PSGI framework for Perl 
6? The cool thing about PSGI is that it allows for 
sharing so called middlewares between applications 
and frameworks.

There’s tons of middlewares from support for running 
behind a front end proxy to awesome debug panels.

In theory, you could have the same with Crust.
But middlewares have yet to appear.



  

 

  

Bailador on Crust

use Dancr;

my $app = Dancr.to-app();

Nevertheless Crust is certainly a good base, so we 
may as well give it a try.

The documentation makes it look much more 
complicated than it actually is.

This tiny p6sgi file is all that’s needed to bring Crust 
and Bailador together.



  

 

  

Bailador on Crust

http server is ready: http://127.0.0.1:5000/ 
(pid:21285, keepalive: 1)

And this looks extremely promising!
It loads and compiles and displays the front page just 

fine.
This means we can just go on and be heroes and 

implement some middleware.
But first, I’m gonna try the login.



  

 

  

Bailador on Crust

http server is ready: http://127.0.0.1:5000/ 
(pid:21285, keepalive: 1)

No such method 'decode' for invocant of type 
'IO::Blob'  in block  at 
/home/nine/rakudo/install/share/perl6/site/sourc
es/597E1F971BE2BD4CFA4FD551B0AC356F
2F8D64DC (Bailador::Request) line 45

Everyone has a point where she just gives up.
The question is only where exactly this point is.
And that will probably depend on, whether you’re just 

playing around or need to earn some hard currency 
with this.

So is there no hope?
Are we really stuck with the choice between a mature 

ecology of modules and the devotion to our new 
love?

11 minutes



  

 

  

Screw it, I want to have both.
If Dancer2 is where the features are, then Dancer2 I 

will use.



  

 

  

First dancing steps

use Dancer2:from<Perl5>;

get '/' => sub {
    'Hello World!';
};

start;

Now this is kind of like the canonical Hello World in 
Dancer2 taken straight out of its tutorial.

This might actually still be simple enough to run.
But if I were to try it, it would explode.
And why is that?



  

 

  

First dancing steps

use Dancer2:from<Perl5>;

get '/' => sub ($app) {
    'Hello World!';
};

start;

Well the documentation does not tell you this, but 
Dancer2 actually passes the application object to 
your handler routine.

Since Perl 6 does have proper subroutine signatures, 
it expects you to declare parameters and complains 
if arguments were passed, but none were 
expected.

So we could do that to make Perl 6 happy.
But that would also make it more tedious and less 

pretty!
And we cannot have that, can we?



  

 

  

First dancing steps

use Dancer2:from<Perl5>;

get '/' => {
    'Hello World!';
};

start;

Luckily, tadzik, who first tried this, found a really 
pretty way around this issue.

In Perl 6, code blocks are not just syntactic elements, 
but first class objects.

You can think of subroutines as code blocks with 
explicit signatures.

Naked code blocks have a default signature with the 
optional topic variable.

And one argument we don't care about is exactly 
what we need here.

Now let’s have a look at how well we do at the 
original Dancr example I ported to Bailador.



  

 

  

Dancr

use v6.c;

unit class Dancr;

use Dancer2:from<Perl5>;
use DBI:from<Perl5>;
use Template:from<Perl5>;

set 'database'     => $*TMPDIR.child('dancr.db');
set 'session'      => 'Simple';
set 'template'     => 'template_toolkit';
set 'logger'       => 'console';
set 'log'          => 'debug';
set 'show_errors'  => 1;
set 'startup_info' => 1;
set 'warnings'     => 1;
set 'username'     => 'admin';
set 'password'     => 'password';
set 'layout'       => 'main';

I'm not gonna show the full source code, that would 
mostly be just boring like this bunch of code.

Interesting bits may just be to point out that I do stick 
with the tutorial closely, so I do use Perl 5's DBI and 
Template Toolkit.

Also one of the little improvements of Perl 6 that 
matter so much in daily life as a programmer is that 
we have File::Spec's functionality integrated into 
the language.

So we can just use the $*TMPDIR variable and its 
convenient child method for platform independent 
storing of our database file.



  

 

  

DBI

sub connect_db() {

    return DBI.connect(

        'dbi:SQLite:dbname='

            ~ setting('database'),

        Any,

        Any,

        ${sqlite_unicode => 1}

    ) or die $DBI::errstr;

}

As I mentioned, I just use the DBI which all of you 
should know.

So this will look familiar to you but also a little strange.
First of all, undef is gone.
Even undefined values are typed in Perl 6.
The closest equivalent to a plain undef is an undefined 

Any.
Now what the hell is this Dollar-Hash thingy?
The answer is, that it's an itemized hash.
In other words, it's a hash that should be treated like a 

single item and that's the important part, not 
interpolated.

Especially not into the argument list of the method call.
Lastly, this slide shows how to access global Perl 5 

variables from within Perl 6, which is exactly like in 
Perl 5 itself.

15 minutes



  

 

  

Hooks

hook before_template_render =>
sub (%tokens) {
    %tokens<css_url>
        = request.base ~ 'css/style.css';
    %tokens<login_url>
        = uri_for('/login');
    %tokens<logout_url>
        = uri_for('/logout');
}

On to a more mundane piece of code, the 
before_template_render hook.

As you probably know much better than me, this is 
just a sub that gets passed a hash in which we can 
store additional values.

Now please, a quick show of hands: how many of you 
have forgotten to add the semicolon after the 
closing curly of the sub at one point or another?

Happens to me all the time, which is why I'm so glad, 
that Perl 6 has fixed this for us.

Yes, indeed, we do not actually need the semicolon 
there anymore.



  

 

  

Performance

get '/' => {
   my $db  = connect_db();
   my $sql = 'select * from entries order by id desc';
   my $sth = $db.prepare($sql) or die $db.errstr;
   $sth.execute or die $sth.errstr;

   template 'show_entries.tt', Map.new((
      msg           => get_flash(),
      add_entry_url => uri_for('/add'),
      entries       => $sth.fetchall_hashref('id'),
   )).item;
}

Now this is the heart of our program, the code that 
actually delivers the page.

The only specialty is the Map thingy there.
Now what is that about?
When we pass a hash from Perl 6 to Perl 5, we 

expect writes to this hash to be visible in Perl 6.
The way to achieve this is by tieing a Perl 5 hash to a 

Perl 6 hash.
This causes all access to be slower which is quite 

visible in benchmarks.
Maps on the other hand are immutable hashes in 

Perl 6. Since they are immutable, we can get away 
with just copying its contents to a pure Perl 5 hash 
for added speed.



  

 

  

Context

post '/add' => {
    send_error("Not logged in", 401)
        unless session('logged_in');

    my $db = connect_db();
    my $sql = 'insert into entries (title, text)'
         ~ 'values (?, ?)';
    my $sth = $db.prepare($sql) or die $db.errstr;
    $sth.execute(
        body_parameters.get('title'),
        body_parameters.get('text')
    ) or die $sth.errstr;

    set_flash('New entry posted!');
    redirect '/';
}

The final piece of Dancer code I'm gonna show is this 
bit.

There's nothing out of the ordinary here.
In fact, it's actually closer to what the Dancer 

documentation suggests than the tutorial itself.
I'm talking about using the body_parameters 

accessor instead of the param function.
Other than this being the recommended way anyway, 

there's a reason for this deviation.
param is context sensitive.
It behaves different in list context than in scalar 

context.
Now Perl 6 does not have this distinction and calls all 

Perl 5 functions in list context because it's the most 
general.



  

 

  

Performance comparison

Dancer2:

Requests per second:    174.18 [#/sec] (mean)

Bailador:

Requests per second:    4.16 [#/sec] (mean)

Now all this switching between Perl 5 and Perl 6 must surely cost a 
whole lot of performance. But how much?

Well I benchmarked the little blog application and found that it’s 
actually doing quite fine.

170 requests per second on my laptop is surely enough for many 
users.

In fact, most websites out there see far less traffic.
For comparison I tried the same with Bailador and was quite 

stunned.
I didn’t expect stellar performance, but 240ms for the simplest of 

sites?
That’s kinda embarassing.
Sure that I have made some mistake, I dug a little into it and found 

out, that Template::Mojo parses the template with a grammar, 
turns it into Perl 6 code and then EVALs the result.

No one ever expected Perl 6 to compile fast.
It’s a humongously complex language.
That’s why we have precompilation after all.
So doing this double parse for every single request is pretty much 

the slowest thing you can do.
Of course this is also fixable and quite easily at that.
Again, this is just a symptom of Perl 6 being quite new to the web.



  

 

  

Next I had a look at Mojolicious.
As Mojolicious is quite similar to Dancer, the results 

were similar as well.
So instead of a boring introduction, I will focus on a 

couple of stumbling blocks I discovered when porting 
all the tutorial examples.



  

 

  

Mojolicious spaces

use Mojolicious::Lite:from<Perl5>;

get '/' => sub ($c) {
    $c.render(text => 'Hello World!');
}

app.start;

This hello world should be pretty much what you 
expected.

Just note the space before the argument list of the 
anonymous subroutine. If you leave that out, Perl 6 
will think you want to call a function called “sub” and 
complain about Variable '$c' not being declared 
which can be quite confusing.



  

 

  

Mojolicious templates

use Mojolicious::Lite:from<Perl5>;

get '/' => sub ($c) {

    $c.stash(:one<23>);

    $c.render(:template<magic>, :two<24>);

}

app.start;

=finish

@@ magic.html.ep

The magic numbers are <%= $one %> and <%= $two %>.

It would be really cool if this example worked as 
shown. Mojolicous supports storing templates in the 
__DATA__ section of your program.

In Perl 6 instead of the magic DATA label, you use the 
=finish POD command to declare the rest of the file 
as data. But this is not (yet) passed on to Perl 5 
code.

So instead we have to move the template code to an 
external template file. But quite honestly, you should 
do that anyway. Least of all to get proper syntax 
highlighting for HTML code.



  

 

  

Mojolicious fat comma

# Render the template "index.html.ep"

get '/' => sub ($c) {

    $c.render;

}, 'index';

# Render the template "hello.html.ep"

get '/hello';

When preparing the example showing how to give a 
route a name, I stumbled over another subtle 
difference between Perl 5 and 6.

The fat comma operator is now syntax for constructing 
a Pair object consisting of a key and a value.

If you chain those, you will actually create two nested 
pairs while the Perl 5 code just expects a flat list of 
values.



  

 

  

Mojolicious Regexes

# /1

# /123

any '/:bar' => [bar => rx/\d+/], sub ($c) {

    my $bar = $c.param('bar');

    $c.render(
        text => "Our :bar placeholder matched $bar",
    );

};

Now this is the first example that really doesn't work. 
Right now it's unfortunately impossible to pass a 
regex from Perl 6 to Perl 5.

I even do have a patch to implement this support, but 
it's still not enough for Mojolicious, as the latter relies 
on stringification of the regex to embed it in a larger 
dispatch matcher.

I think it's a problem that can be solved. Just for now, 
this is an unfortunate restriction.



  

 

  

Mojolicious Websockets

websocket '/echo' => sub ($c) {

    $c.on(json => sub ($c, $hash) {

        $hash<msg> = "echo: $hash<msg>";

        $c.send(${json => $hash});

    });

}

What does work on the other hand is websockets.
And I can't help but find this incredibly cool.
And if you look at this, there's really nothing special 

you have to do.



  

 

  

  18

For something that looks a bit different than the last 3 
frameworks, Catalyst is an interesting candidate.

Catalyst puts a bit more pressure on you to stick to an 
MVC architecture.

It automatically loads your module, view and controller 
modules and of course it expects those to be written 
in Perl 5.

It even goes a step further and generates the 
boilerplate code for you.



  

 

  

Catalyst Controller

package XStats::Controller::Root;
use Moose;
use namespace::autoclean;

BEGIN { extends 'Catalyst::Controller'; }

#
# Sets the actions in this controller to be registered with no prefix
# so they function identically to actions created in MyApp.pm
#
__PACKAGE__->config(namespace => '');

__PACKAGE__→meta→make_immutable;

...

This is code which we probably better just leave as it 
is.

So we also won’t waste much time on it.
The far more interesting question is, how do we get our 

Perl 6 code into there?



  

 

  

Catalyst Controller cont.

...

use v6-inline;

use CatalystX::Perl6::Component::Perl5Attributes;

method index($c) is Path is Args(0) {

    $c.stash({

        template  => 'index.zpt',

        uri_graph => $c.uri_for('graph'),

    });

}

The answer is by declaring that the rest of the file to be 
written in Perl 6.

Everything from the “use v6-inline” statement on is 
plain Perl 6 code.

We have an index method with appropriate Catalyst 
attributes making the method a Catalyst action.

Of course we get passed the context object and can 
use the usual methods to get our work done.

This works pretty much out of the box, except for the 
Catalyst attributes.

In Perl 6, there’s no such thing as subroutine 
attributes.

Instead, there’s a more general mechanism called 
Traits.



  

 

  

CatalystX::Perl6::Component::Perl5Attributes

use Inline::Perl5;

multi trait_mod:<is>(Routine $declarand, :$Path!) is export {

    unless $declarand.does(Inline::Perl5::Perl5Attributes) {

        $declarand does Inline::Perl5::Perl5Attributes;

    }

    $declarand.attributes.push(
        'Path' ~ ($Path.isa(Bool) ?? '' !! "('$Path')")
    );

}

Traits can for example be a convenient way to add a 
role to those method objects.

For Catalyst actions, we want to mix in the 
Inline::Perl5::Perl5Attributes role.

This role provides an “attributes” attribute, which is just 
a list of attributes to apply to the Perl 5 wrapper 
method that gets generated for our inlined Perl 6 
methods.

The helper module provides two more trait_mod 
functions for supporting the Args and ActionClass 
attributes. They look pretty much exactly like this 
one.

And that’s it.
That’s all you should have to know to be able to use 

Catalyst in a Perl 6 web application.



  

 

  

“Even though As I am in the thralls of Perl 6, I still 
do all my web development in with Perl 5 because 

the ecology of modules is so mature.”

And now I know what’s been bothering me about the 
sentence that haunted us so far.

It takes just two really tiny changes for me to be able to 
make peace with it.

Because even though it is certainly fun building a new 
web framework, I sometimes just need the reliable 
tools, I’m so familiar with.

Luckily, they are still there for me.



  

 

  

Y

Now the question which I haven’t touched yet is: why would I want 
to?

Why would I want to leave the familiar territory and venture forth into 
the unknown?

For some the answer would be “Exactly! Because I want to explore!”
Some will be attracted by the opportunity to carve out a name for 

themselves to maybe become the next Sebastian Riedl.
Others will simply feel that Perl 6 as a language is incredibly well 

suited for web tasks.
Thanks to emoticons, Unicode is huge right now and Perl 6 is at the 

forefront.
It also covers a sweet spot between having type support that catches 

a lot of stupid errors and being dynamically typed enough to not 
get in the way.

And of course, having good parallelism and concurrency support let 
us finally move into this day and age regarding the use of our 
computing power.

While the solutions I’ve shown you today won’t get you there 
immediately, they can be a good first step in the right direction.



  

 

  

Thank You!

http://niner.name/talks/
http://github.com/niner/

What's really impossible is to find any high resolution 
logos of any of the covered web frameworks.


