

ACME::Foo::Bar → ACME/Foo/Bar.pm

os.path → os/path.py

@INC

/usr/lib/perl5/site_perl/5.22.1/x86_64-linux-thread-multi

/usr/lib/perl5/site_perl/5.22.1

/usr/lib/perl5/vendor_perl/5.22.1/x86_64-linux-thread-multi

/usr/lib/perl5/vendor_perl/5.22.1

/usr/lib/perl5/5.22.1/x86_64-linux-thread-multi

/usr/lib/perl5/5.22.1

Compiled modules

● > find /usr/lib/perl5 -name "*.pmc" | wc -l

2
● > find /usr/lib/python3.4 -name "*.pyc" | wc -l

793

Perl 6 features

● Ünicöde
● Authors
● Versions

Packaging

> rpm -ql perl-Net-Telnet-3.04-5.4.noarch

/usr/lib/perl5/vendor_perl/5.22.1/Net

/usr/lib/perl5/vendor_perl/5.22.1/Net/Telnet.pm

/usr/share/doc/packages/perl-Net-Telnet

/usr/share/doc/packages/perl-Net-Telnet/ChangeLog

/usr/share/doc/packages/perl-Net-Telnet/README

/usr/share/man/man3/Net::Telnet.3pm.gz

Long names

Foo::Bar:auth<cpan:nine>:ver<0.3>:api<1>

$*REPO

role CompUnit::Repository {
 has CompUnit::Repository $.next-repo is rw;

 method need(CompUnit::DependencySpecification $spec,
 CompUnit::PrecompilationRepository $precomp,
 CompUnit::PrecompilationStore :@precomp-stores)
 returns CompUnit:D
 { ... }

 method loaded()
 returns Iterable
 { ... }

 method id()
 returns Str
 { ... }
}

> perl6 -Ilib -e 'dd $*REPO'

CompUnit::Repository::FileSystem.new("/home/
nine/lib")

> perl6 -e 'dd $*REPO'

CompUnit::Repository::Installation.new("/home/
nine/.perl6/2015.12-395-g9c0f96f")

Matching

use Inline::Perl5:auth(/.*:nine/):ver(v0.2+);

CompUnit::DependencySpecification.new(
 :short-name<Inline::Perl5>,
 :auth-matcher(/.*:nine/),
 :version-matcher(v0.2+),
);

'Inline::Perl5' eq 'Inline::Perl5'
and 'cpan:nine' ~~ /.*:nine/
and v0.3 ~~ v0.2+
and 1 ~~ True

.
├── bin
├── dist
│ └── 3FD70CCCD6914FAEC84AFAE6F97AF461A3EE1588
├── repo.lock
├── resources
├── short
│ ├── 0D7FDBBC72083980348BED148BF46BD198D51DE8
│ │ └── 3FD70CCCD6914FAEC84AFAE6F97AF461A3EE1588
│ └── F6FD7A4346B3BB0E3124991926D729836808DA54
│ └── 3FD70CCCD6914FAEC84AFAE6F97AF461A3EE1588
├── sources
│ ├── 09A0291155A88760B69483D7F27D1FBD8A131A35
│ └── FE7156F9200E802D3DB8FA628CF91AD6B020539B
└── version

%?RESOURCES

%?RESOURCES<libraries/p5helper>

%?RESOURCES<icons/foo.png>

%?RESOURCES<schema.sql>

Foo
├── lib
│ └── Foo.pm6
└── resources
 └── schema.sql

unit class CompUnit::Repository::DependencyTracker
 does CompUnit::Repository;

CompUnit::RepositoryRegistry.use-repository($?CLASS.new);

my %seen := SetHash.new;
END say %seen;

method need(
 CompUnit::DependencySpecification $spec,
 CompUnit::PrecompilationRepository $precomp?
) {
 %seen{$spec.Str}++;
 self.next-repo.need($spec,
CompUnit::PrecompilationRepository::None);
}

method id() { 'dependencytracker' }
method loaded() { [] }

unit class CompUnit::Repository::Panda
 does CompUnit::Repository;

my $prev-repo = $*REPO.repo-chain[*-1];
$prev-repo.next-repo = CompUnit::Repository::Panda.new;

method need(
 CompUnit::DependencySpecification $spec,
 CompUnit::PrecompilationRepository $precomp
) {
 run('panda', 'install', $spec.short-name);
 $prev-repo.next-repo = CompUnit::Repository;
 LEAVE {
 $prev-repo.next-repo = self;
 }
 $*REPO.need($spec)
}

method id() { 'panda' }
method loaded() { [] }

Foo

Foo::Baz Foo::Bar

Qux

Dependencies

Precomp stores

home → site → vendor → perl

precomp precomp precomp precomp

Thank You!

http://niner.name/talks/
http://github.com/niner/

We did it!
The great experiment came to conclusion.
We took 15 years, longer than anyone ever before to

undisputably proof, that the student syndrome is
unavoidable.

15 years of time to complete the project and still
when the self-picked deadline arrived, we had to
rush to get the final pieces in place.

One of those pieces was a completely redesigned
framework for module installation and loading.

Unfortunately it was also one of the biggest sources
of pain right after the big release.

How comes?
Why did it take 15 years to design and implement this

module framework?
Shouldn't this be a rather mundane part compared to

the rest of Perl 6?

Before I answer those questions, let's have a look at
how languages like Perl 5 or Python handle module
installation and loading.

ACME::Foo::Bar → ACME/Foo/Bar.pm

os.path → os/path.py

In those languages, module names have a 1:1
relation with file system paths.

We simply replace the double colons with slashes
and add a .pm

Note that these are relative paths.
Both Python and Perl 5 use a list of include paths, to

complete these paths.
In Perl 5 they are available in the global @INC array.

@INC

/usr/lib/perl5/site_perl/5.22.1/x86_64-linux-thread-multi

/usr/lib/perl5/site_perl/5.22.1

/usr/lib/perl5/vendor_perl/5.22.1/x86_64-linux-thread-multi

/usr/lib/perl5/vendor_perl/5.22.1

/usr/lib/perl5/5.22.1/x86_64-linux-thread-multi

/usr/lib/perl5/5.22.1

Each of these include directories is checked for
whether it contains a relative path determined from
the module name.

If the shoe fits, the file is loaded.

Of course that's a bit of a simplified version.
Both languages support caching compiled versions of

modules.
So instead of just the .pm file Perl 5 first looks for a

.pmc file.
So does Python with .pyc files.

Compiled modules

● > find /usr/lib/perl5 -name "*.pmc" | wc -l

2
● > find /usr/lib/python3.4 -name "*.pyc" | wc -l

793

While the support is there, to my knowledge almost
no one uses this possibility in Perl 5 while in Python
it's quite common to precompile modules on
installation.

Module installation in both cases means mostly
copying files into locations determined by the same
simple mapping.

This system is easy to explain, easy to understand,
simple and robust.

In other words, it sounds pretty much perfect.
So Perl 6 should probably just follow these well

established examples and do the same, shouldn't
it?

Perl 6 features

● Ünicöde
● Authors
● Versions

I would say "yes", if it weren't for some features that they lack and that Perl 6 wants
to provide:

* Unicode module names
* Modules published under the same names by different authors
* Having multiple versions of a module installed

Why would you want this madness?
The only language that restricts itself to 26 Latin characters is Latin. Even English

has diacritics for many loan words, at least if they're written correctly. With a 1:1
relation between module names and file system paths, you enter a world of pain
once you try to support Unicode on multiple platforms and file systems.

Then there's sharing module names between multiple authors. This one may or
may not work out well in practice. I can imagine using it for example for
publishing a module with some fix until the original author includes the fix in the
"official" version.

Finally there's multiple versions. Usually people who need certain versions of
modules reach for local::lib or containers or some home grown workarounds.
They all have their own disadvantages. None of them would be necessary if
applications could just say, hey I need good old, trusty version 2.9 or maybe a
bug fix release of that branch.

If you had any hopes of continuing using the simple name mapping solution, you
probably gave up at the versioning requirement. Because, how would you find
version 3.2 of a module when looking for a 2.9 or higher?

Any ideas?

Packaging

> rpm -ql perl-Net-Telnet-3.04-5.4.noarch

/usr/lib/perl5/vendor_perl/5.22.1/Net

/usr/lib/perl5/vendor_perl/5.22.1/Net/Telnet.pm

/usr/share/doc/packages/perl-Net-Telnet

/usr/share/doc/packages/perl-Net-Telnet/ChangeLog

/usr/share/doc/packages/perl-Net-Telnet/README

/usr/share/man/man3/Net::Telnet.3pm.gz

Popular ideas included collecting information about installed
modules in JSON files and as those turned out to be toe nail
growing slow, putting the meta data into SQLite databases.

However, these ideas can be easily shot down by introducing
another requirement: distribution packages.

Packages for Linux distributions are mostly just archives containing
some files plus some meta data.

Ideally the process of installing such a package means just
unpacking the files and updating the central package database.

Uninstalling means deleting the files installed this way and again
updating the package database.

Changing existing files on install and uninstall makes packagers'
lives much harder, so we really want to avoid that.

Also the names of the installed files may not depend on what was
previously installed.

We must know at the time of packaging what the names are going
to be.

So what does the current attempt at solving all these challenges
look like?

Long names

Foo::Bar:auth<cpan:nine>:ver<0.3>:api<1>

Step 0 in getting us back out of this mess is some
definitions:

A full module name in Perl 6, a so called long-name
consists of the short-name, auth, version and API

On the other side, the thing you install is usually not a
single module but a distribution which probably
contains one or more modules.

Distribution names work just the same way as
module names.

Indeed, distributions often will just be called after their
main module.

An important property of distributions is that they are
immutable.

Foo:auth<nine>:ver<0.3>:api<1> will always be the
name for exactly the same code.

$*REPO

role CompUnit::Repository {
 has CompUnit::Repository $.next-repo is rw;

 method need(CompUnit::DependencySpecification $spec,
 CompUnit::PrecompilationRepository $precomp,
 CompUnit::PrecompilationStore :@precomp-stores)
 returns CompUnit:D
 { ... }

 method loaded()
 returns Iterable
 { ... }

 method id()
 returns Str
 { ... }
}

In Perl 5 and Python you deal with include paths, pointing to file
system directories.

In Perl 6 we call such directories "repositories" and each of these
repositories is governed by an object that does the
CompUnit::Repository role.

Instead of an @INC array, there's the $*REPO variable.
It contains a single repository object.
This object has a "next-repo" attribute that may contain another

repository.
In other words: repositories are managed as a linked list.
The important difference to the traditional array is, that when going

through the list, each object has a say in whether to pass along
a request to the next-repo or not.

Perl 6 sets up a standard set of repositores, i.e. the "perl", "vendor"
and "site" repositories, just like you know them from Perl 5.

In addition, we set up a "home" repository for the current user.

Repositories must implement the "need" method.
A "use" or "require" statement in Perl 6 code is basically translated

to a call to $*REPO's "need" method.
This method may in turn delegate the request to the next-repo.

> perl6 -Ilib -e 'dd $*REPO'

CompUnit::Repository::FileSystem.new("/home/
nine/lib")

> perl6 -e 'dd $*REPO'

CompUnit::Repository::Installation.new("/home/
nine/.perl6/2015.12-395-g9c0f96f")

Rakudo comes with several classes that can be used
for repositories.

The most important ones are
CompUnit::Repository::FileSystem and
CompUnit::Repository::Installation.

The FileSystem repo is meant to be used during
module development and actually works just like
Perl 5 when looking for a module.

It doesn't support versions or auths and simply maps
the short-name to a file system path.

The Installation repository is where the real smarts
are.

Matching

use Inline::Perl5:auth(/.*:nine/):ver(v0.2+);

CompUnit::DependencySpecification.new(
 :short-name<Inline::Perl5>,
 :auth-matcher(/.*:nine/),
 :version-matcher(v0.2+),
);

'Inline::Perl5' eq 'Inline::Perl5'
and 'cpan:nine' ~~ /.*:nine/
and v0.3 ~~ v0.2+
and 1 ~~ True

When requesting a module, you will usually either do
it via its exact long name, or you say something
along the lines of "give me a module that matches
this filter".

Such a filter is given by way of a
CompUnit::DependencySpecification object which
has fields for: short-name, auth-matcher, version-
matcher and api-matcher.

When looking through candidates, the Installation
repository will smart match a module's long name
against this DependencySpecification or rather the
individual fields against the individual matchers.

Thus a matcher may be some concrete value, a
version range or even a regex.

.
├── bin
├── dist
│ └── 3FD70CCCD6914FAEC84AFAE6F97AF461A3EE1588
├── repo.lock
├── resources
├── short
│ ├── 0D7FDBBC72083980348BED148BF46BD198D51DE8
│ │ └── 3FD70CCCD6914FAEC84AFAE6F97AF461A3EE1588
│ └── F6FD7A4346B3BB0E3124991926D729836808DA54
│ └── 3FD70CCCD6914FAEC84AFAE6F97AF461A3EE1588
├── sources
│ ├── 09A0291155A88760B69483D7F27D1FBD8A131A35
│ └── FE7156F9200E802D3DB8FA628CF91AD6B020539B
└── version

As previously mentioned, loading the meta data of all installed distributions would
be prohibitively slow.

Instead, we use the file system as a kind of database.
We store not only a distribution's files but also create indices for speeding up

lookups.
One of these indices comes in the form of directories named after the short-name

of installed modules.
However thanks to the Unicode issues mentioned, we cannot just use the module

names directly.
This is where the now infamous SHA-1 hashes enter the game.
The directory names are the ASCII encoded SHA-1 hashes of the UTF-8 encoded

module short-names.

In these directories we find one file per distribution that contains a module with a
matching short name.

These files again contain the ID of the dist and the other fields that make up the
long name: auth, version and api.

So by reading these files we have a usually short list of auth-version-api triplets
which we can match against our DependencySpecification.

We end up with the winning dist's ID, which we use to look up the meta data,
stored in a JSON encoded file.

This meta data contains the name of the file in the sources/ directory containing
the requested module's code.

This is what we can load.

Finding names for source files is again a bit tricky, as there's still the Unicode issue
and in addition the same relative file names may be used by different installed
distributions (think versions).

So for now at least, we use SHA-1 hashes of the long-names.

%?RESOURCES

%?RESOURCES<libraries/p5helper>

%?RESOURCES<icons/foo.png>

%?RESOURCES<schema.sql>

Foo
├── lib
│ └── Foo.pm6
└── resources
 └── schema.sql

It's not only source files that are stored and found this
way.

Distributions may also contain arbitrary resource files.
These could be images, language files or shared

libraries that are compiled on installation.
They can be accessed from within the module

through the %?RESOURCES hash

As long as you stick to the standard layout
conventions for distributions, this even works during
development without installing anything.

A nice result of this architecture is that it's fairly easy
to create special purpose repositories.

unit class CompUnit::Repository::DependencyTracker
 does CompUnit::Repository;

CompUnit::RepositoryRegistry.use-repository($?CLASS.new);

my %seen := SetHash.new;
END say %seen;

method need(
 CompUnit::DependencySpecification $spec,
 CompUnit::PrecompilationRepository $precomp?
) {
 %seen{$spec.Str}++;
 self.next-repo.need($spec,
CompUnit::PrecompilationRepository::None);
}

method id() { 'dependencytracker' }
method loaded() { [] }

My first example is
CompUnit::Repository::DependencyTracker which
you put into the repository chain and which simply
records what's going on and tells you which
modules were loaded.

There are several Perl 5 modules that try to do this,
but as far as I could find out, none of them can tell
you exactly what was requested, i.e. the
DependencySpecification but only what was
actually loaded.

unit class CompUnit::Repository::Panda
 does CompUnit::Repository;

my $prev-repo = $*REPO.repo-chain[*-1];
$prev-repo.next-repo = CompUnit::Repository::Panda.new;

method need(
 CompUnit::DependencySpecification $spec,
 CompUnit::PrecompilationRepository $precomp
) {
 run('panda', 'install', $spec.short-name);
 $prev-repo.next-repo = CompUnit::Repository;
 LEAVE {
 $prev-repo.next-repo = self;
 }
 $*REPO.need($spec)
}

method id() { 'panda' }
method loaded() { [] }

The second example is CompUnit::Repository::Panda.
Just load this module and it will transparently install any

missing dependency.
It doesn't do any harm if a module is already installed as it

will attach itself to the end of the repository chain and will
only be called if no other repository can satisfy the
dependency.

While in Perl 5 something similar is quite possible, the
result is much less nice and does have significant runtime
overhead.

So far, we've looked at loading modules from source files.
However, just the same as Perl 5 and Python, Perl 6

supports precompiling modules into binaries.
While this is rarely used in Perl 5 and a nice bonus in

Python, in Perl 6 it's almost essential.
At least, if you do not want to wait for a minute or two while

loading a moderately sized code base.
Yes, compilation of Perl 6 code is slow. It takes forever.

Foo

Foo::Baz Foo::Bar

Qux

Dependencies

Luckily precompilation at least works quite well in most cases. Yet it
comes with its own set of challengess. Loading a single module is
easy.

Fun starts when that module has dependencies and those
dependencies have again dependencies of their own.

When loading a precompiled file in Perl 6 we need to load the
precompiled files of all its dependencies, too.

And those dependencies *must* be precompiled, we cannot load them
from source files.

Even worse, the precomp files of the dependencies *must* be exactly
the same files we used for precompiling our module in the first
place.

To top it off, precompiled files work only with the exact perl6 binary, that
was used for compilation.

All of that would still be quite manageable if it weren't for an additional
requirement: as a user you expect a new version of a module you
just installed to be actually used, don't you?

In other words: if you upgrade a dependency of a precompiled module,
we have to detect this and precompile the module again with the
new dependency.

Precomp stores

home → site → vendor → perl

precomp precomp precomp precomp

Now remember that while we have a standard repository chain, the
user may prepend additional repositories by way of "-I" on the
command line or "use lib" in the code.

These repositories may contain the dependencies of precompiled
modules.

Our first solution to this riddle was that each repository gets it's own
precomp store where precompiled files are stored.

We only ever load precomp files from the precomp store of the very
first repository in the chain because this is the only repository that
has direct or at least indirect access to all the candidates.

If this repository is a FileSystem repository, we create a precomp store
in a .precomp directory.

While being the safe option, this has the consequence that whenever
you use a new repository, we will start out without access to
precompiled files.

Instead, we will precompile the modules used when they are first
loaded.

Since the "home" repository is not available when installing a module
system wide, the sad truth is, that we will not even use the precomp
files created during installation.

Luckily a solution is just around the corner and it will allow us to use
precomp files of other repositories as long as there are no changes
to their dependencies.

This solution will land in the next few weeks.

Thank You!

http://niner.name/talks/
http://github.com/niner/

To draw a conclusion: Perl 6 tries to go a step or five
further than other languages. In the case of module
management, we shipped a somewhat reasonable
first implementation. There are lots of opportunities
for improving the user experience, lots of
improvements already in the works and a couple of
interesting new possibilities.

Stay tuned and talk to us on #perl6 about where you
would want to see this going.

And finally as a little homework exercise: write a
CompUnit::Repository that hides an installed
module like you would want in a test file to check if
everything works if an optional dependency is
missing.

